FUNCTIONS

Definition

- A function is a rule that assigns to each element in a set A exactly one element, called $f(x)$, in a set B
- The set A is called the domain of f
- The number $f(x)$ is the value of f at \mathbf{x}
- The range of f is the set of all possible values of $f(x)$ in B as x varies throughout the domain.
- A symbol, such as " x ", that represents an arbitrary number in the domain of a function is called an independent variable.
- A symbol that represents a number in the range of f is called a dependent variable.

Vertical line test

- A curve in the xy-plane is the graph of a function of x if and only if every vertical line intersects the curve exactly once.

PROPERTIES OF FUNCTIONS FROM \mathbb{R} TO \mathbb{R}

Increasing and Decreasing Functions

- A function f is called increasing on an interval I if
- Whenever $\mathrm{x}_{1}<\mathrm{x}_{2}$ for two numbers x_{1} and x_{2} in I , then $\mathrm{f}\left(\mathrm{x}_{1}\right)<\mathrm{f}\left(\mathrm{x}_{2}\right)$
- A function f is called decreasing on an interval I if
- Whenever $\mathrm{x}_{1}<\mathrm{x}_{2}$ for two numbers x_{1} and x_{2} in I , then $\mathrm{f}\left(\mathrm{x}_{1}\right)>\mathrm{f}\left(\mathrm{x}_{2}\right)$

Symmetric Functions

- If a function f satisfies the property $\mathrm{f}(-\mathrm{x})=\mathrm{f}(\mathrm{x})$ for every number x in its domain, then f is called an even function.
- If a function f satisfies the property $f(-x)=-f(x)$ for every number x in its domain, then f is called an odd function.

ALGEBRAIC FUNCTIONS

Polynomial Functions

- A function P from \mathbb{R} to \mathbb{R} is called a polynomial if

$$
\mathrm{P}(\mathrm{x})=\mathrm{a}_{\mathrm{n}} \mathrm{x}^{\mathrm{n}}+\mathrm{a}_{\mathrm{n}-1} \mathrm{x}^{\mathrm{n}-1}+\ldots+\mathrm{a}_{2} \mathrm{x}^{2}+\mathrm{a}_{1} \mathrm{x}^{1}+\mathrm{a}_{0}
$$

Where n is a nonnegative integer, and the number $\mathrm{a}_{0}, \mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{n}}$ are constants called the coefficients of the polynomial.

- If the leading coefficient $a_{n} \neq 0$, then the degree of the polynomial is n.
- A polynomial function of degree 0 is called a constant function.
- A polynomial function of degree 1 is called a linear function.
- A polynomial function of degree 2 is called a quadratic function.
- A polynomial function of degree 3 is called a cubic function.

Power functions

- A power function f is a function of the form $\mathrm{f}(\mathrm{x})=\mathrm{x}^{\mathrm{a}}$
- If $\mathrm{a}=1 / \mathrm{n}$ where n is a positive integer, $\mathrm{f}(\mathrm{x})=\mathrm{x}^{1 / \mathrm{n}}=\sqrt[n]{x}$ is a root function
- If $\mathrm{a}=-1, \mathrm{f}(\mathrm{x})=\mathrm{x}^{-1}=1 / \mathrm{x}$ is the reciprocal function.

Algebraic Functions

- A rational function f is a function of the form $f(x)=\frac{P(x)}{Q(x)}$

Where P and Q are two polynomial functions
The domain of f consists of all values of x where $Q(x) \neq 0$

- An algebraic function f is a function that can be constructed using algebraic operations (such as addition, subtraction, multiplication, and taking roots) starting with polynomials.

Piecewise Defined Functions

- A piecewise defined function f is a function which is defined with different formulas for different intervals of the domain.

