## INVERSE FUNCTIONS

## One-to-One Functions

- A function $f$ is called a one-to-one (abbreviated " $1-1$ ") function if it never takes the same value twice; that is:
Whenever $\mathrm{x}_{1} \neq \mathrm{x}_{2}$, then $\mathrm{f}\left(\mathrm{x}_{1}\right) \neq \mathrm{f}\left(\mathrm{x}_{2}\right)$
- Horizontal Line Test: a function is 1-1 iff no horizontal line intersects its graph more than once.

Inverse Functions

- Let f be a $1-1$ function with domain A and range B . Then its inverse function $f^{1}$ has domain $B$ and range $A$ and is defined by:

$$
\mathrm{f}^{1}(\mathrm{y})=\mathrm{x} \Leftrightarrow \mathrm{f}(\mathrm{x})=\mathrm{y}
$$

Note that domain of $f^{-1}=$ range of $f$ and range of $f^{-1}=$ domain of $f$.
Note:

- Do not mistake the -1 in $f^{1}$ for an exponent:

$$
\mathrm{x}^{-1}=1 / \mathrm{x}, \text { but } \mathrm{f}^{-1}(\mathrm{x}) \neq 1 / \mathrm{f}(\mathrm{x})
$$

- However, $[\mathrm{f}(\mathrm{x})]^{-1}=1 / \mathrm{f}(\mathrm{x})$


## Cancellation Equations

- If a function f from domain $A$ to range $B$ has an inverse function $f^{1}$, then:
For every x in $\mathrm{Af}^{1}(\mathrm{f}(\mathrm{x}))=\mathrm{x}$
For every $x$ in $B f\left(f^{1}(x)\right)=x$

