TRANSCENDENTAL FUNCTIONS

• Functions which are not algebraic are called **transcendental** functions. These include, but are not limited to, trigonometric, exponential, and logarithmic function.

EXPONENTIAL FUNCTIONS

• An **exponential** function is a function of the form $f(x) = a^x$ where a is a positive constant.

if x is a rational p/q, $f(p/q) = a^{p/q} = a^{p.1/q} = (a^p)^{1/q} = \sqrt[q]{a^p}$

• Laws of exponents: If a and b are positive numbers and x and y are any real numbers, then

 $a^{x+y} = a^{x}a^{y}$ $a^{x-y} = a^{x}/a^{y}$ $(a^{x})^{y} = a^{xy}$ $(ab)^{x} = a^{x}b^{x}$

• The number **e** is the irrational number such that the tangent to the graph of $f(x)=e^x$ at (0,1) has a slope of 1.

LOGARITHMIC FUNCTIONS

if a>0 and a≠1, the exponential function f(x) = a^x is either increasing or decreasing, and so is 1-1 by the horizontal line test. It has therefore an inverse function f⁻¹, called the logarithmic function with base a, denoted by log_a. i.e.

 $\log_a x = y \Leftrightarrow a^y = x$

- i.e. for every x in \mathbb{R} , $\log_a(a^x) = x$ and $a^{\log_a x} = x$
- in particular, for x=0,1: $0 = \log_a(a^0) = \log_a 1$; $1 = \log_a(a^1) = \log_a a$
- Laws of logarithms: if x and y are positive numbers, then
- 1. $\log_a(x.y) = \log_a x + \log_a y$
- 2. $\log_a (x/y) = \log_a x \log_a y$
- 3. $\log_a (x^r) = r \log_a x$ (where r is any real number)
- 4. $\log_a x = (\log_b x) / (\log_b a)$ whenever $a \neq 1$
- **Natural Log**: e is a special base: $\log_e x = \ln x$

TRIGONOMETRIC FUNCTIONS

Definitions

- A **trigonometric** function is a function where the domain or range includes angles.
- The **standard position** of an angle is the one where the vertex is at the origin of the coordinate system, and the initial side on the positive x-axis.
- A **positive** angle is obtained by rotating the initial side counterclockwise until it coincides with the terminal side.
- Negative angles are obtained similarly with clockwise rotations.

Measuring angles:

- $2\pi \text{ rad} = 360^{\circ}$
- so 1 rad = $(180/\pi)^{\circ} \approx 57.3^{\circ}$ and 1° = $(\pi / 180)$ rad ≈ 0.017 rad

Calculating length of arcs:

To find length a of arc of angle θ rad, solve for a: i.e. $a = r\theta$

Sin and cos

• Definitions of cos and sin

Given a circle C of center (0,0) and radius 1 and an angle θ Let P be the point where the terminal side of the angle θ in standard position intersects with C.

 $\cos \theta = x$ coordinate of P.

 $\sin \theta = y$ coordinate of P.

Since C is the graph of all points (x,y) with the property $x^2+y^2=1$ then $\cos^2\theta + \sin^2\theta = 1$

• Properties

 $\cos(-\theta) = \cos \theta$ i.e. $\cos is$ even $sin(-\theta) = -sin \theta$ i.e. sin is odd $\cos(\theta+2\pi) = \cos \theta$ $sin(\theta+2\pi) = sin \theta$

• General Definition:

Given an angle θ and a point P(x,y) on the terminal side of the angle. Let r be the distance between P and the vertex of the angle. Then $\cos \theta = x/r$ and $\sin \theta = y$

• Alternate definition for acute angles For an acute angle θ $\cos \theta = adj/hyp$ and $\sin \theta = opp/hyp$

Tan

• Given an angle θ , define $\tan \theta = (\sin \theta) / (\cos \theta)$

Inverse Functions:

- $\arcsin x = \sin^{-1} x$ for x in domain $[-\pi/2, \pi/2]$
- $\arccos x = \cos^{-1}(x)$ in domain $[0, \pi]$
- arctan x = tan⁻¹ x for x in domain $[-\pi/2, \pi/2]$

Other Functions:

Given an angle θ , define:

- $\sec \theta = 1 / (\cos \theta)$
- $\csc \theta = 1 / (\sin \theta)$
- $\cot \theta = 1 / (\tan \theta) = (\cos \theta) / (\sin \theta)$