TRANSCENDENTAL FUNCTIONS

- Functions which are not algebraic are called transcendental functions. These include, but are not limited to, trigonometric, exponential, and logarithmic function.

EXPONENTIAL FUNCTIONS

- An exponential function is a function of the form $f(x)=a^{x}$ where a is a positive constant.
if x is a rational $\mathrm{p} / \mathrm{q}, \mathrm{f}(\mathrm{p} / \mathrm{q})=\mathrm{a}^{\mathrm{p} / \mathrm{q}}=\mathrm{a}^{\mathrm{p} .1 / \mathrm{q}}=\left(\mathrm{a}^{\mathrm{p}}\right)^{1 / \mathrm{q}}=\sqrt[q]{a^{p}}$
- Laws of exponents: If a and b are positive numbers and x and y are any real numbers, then

$$
\begin{aligned}
& a^{x+y}=a^{x} a^{y} \\
& a^{x-y}=a^{x} / a^{y} \\
& \left(a^{x}\right)^{y}=a^{x y} \\
& (a b)^{x}=a^{x} b^{x}
\end{aligned}
$$

- The number \mathbf{e} is the irrational number such that the tangent to the graph of $f(x)=e^{x}$ at $(0,1)$ has a slope of 1 .

LOGARITHMIC FUNCTIONS

- if $\mathrm{a}>0$ and $\mathrm{a} \neq 1$, the exponential function $\mathrm{f}(\mathrm{x})=\mathrm{a}^{\mathrm{x}}$ is either increasing or decreasing, and so is $1-1$ by the horizontal line test. It has therefore an inverse function f^{1}, called the logarithmic function with base \mathbf{a}, denoted by $\log _{a}$. i.e.

$$
\log _{a} x=y \Leftrightarrow a^{y}=x
$$

- i.e. for every x in $\mathbb{R}, \log _{\mathrm{a}}\left(\mathrm{a}^{\mathrm{x}}\right)=\mathrm{x}$ and $a^{\log _{a} \mathrm{x}}=\mathrm{x}$
- in particular, for $\mathrm{x}=0,1: 0=\log _{\mathrm{a}}\left(\mathrm{a}^{0}\right)=\log _{\mathrm{a}} 1 ; 1=\log _{\mathrm{a}}\left(\mathrm{a}^{1}\right)=\log _{\mathrm{a}} \mathrm{a}$
- Laws of logarithms: if x and y are positive numbers, then

1. $\log _{a}(x . y)=\log _{a} x+\log _{a} y$
2. $\log _{a}(x / y)=\log _{a} x-\log _{a} y$
3. $\log _{a}\left(x^{r}\right)=r \log _{a} x$ (where r is any real number)
4. $\log _{\mathrm{a}} \mathrm{x}=\left(\log _{\mathrm{b}} \mathrm{x}\right) /\left(\log _{\mathrm{b}} \mathrm{a}\right) \quad$ whenever $\mathrm{a} \neq 1$

- Natural Log: e is a special base: $\log _{\mathrm{e}} \mathrm{x}=\ln \mathrm{x}$

TRIGONOMETRIC FUNCTIONS

Definitions

- A trigonometric function is a function where the domain or range includes angles.
- The standard position of an angle is the one where the vertex is at the origin of the coordinate system, and the initial side on the positive x -axis.
- A positive angle is obtained by rotating the initial side counterclockwise until it coincides with the terminal side.
- Negative angles are obtained similarly with clockwise rotations.

Measuring angles:

- $2 \pi \mathrm{rad}=360^{\circ}$
- \quad so $1 \mathrm{rad}=(180 / \pi)^{\circ} \approx 57.3^{\circ}$ and $1^{\circ}=(\pi / 180) \mathrm{rad} \approx 0.017 \mathrm{rad}$

Calculating length of arcs:
To find length a of arc of angle θ rad, solve for a:
i.e. $a=r \theta$

Sin and cos

- Definitions of cos and sin

Given a circle C of center $(0,0)$ and radius 1 and an angle θ
Let P be the point where the terminal side of the angle θ in standard position intersects with C .
$\cos \theta=x$ coordinate of P.
$\sin \theta=y$ coordinate of P .
Since C is the graph of all points (x, y) with the property $\mathrm{x}^{2}+\mathrm{y}^{2}=1$ then $\cos ^{2} \theta+\sin ^{2} \theta=1$

- Properties

$$
\begin{array}{ll}
\cos (-\theta)=\cos \theta & \text { i.e. } \cos \text { is even } \\
\sin (-\theta)=-\sin \theta & \text { i.e. } \sin \text { is odd } \\
\cos (\theta+2 \pi)=\cos \theta & \\
\sin (\theta+2 \pi)=\sin \theta &
\end{array}
$$

- General Definition:

Given an angle θ and a point $\mathrm{P}(\mathrm{x}, \mathrm{y})$ on the terminal side of the angle. Let r be the distance between P and the vertex of the angle. Then $\cos \theta=\mathrm{x} / \mathrm{r}$ and $\sin \theta=\mathrm{y}$

- Alternate definition for acute angles

For an acute angle θ $\cos \theta=\mathrm{adj} / \mathrm{hyp}$ and $\sin \theta=\mathrm{opp} / \mathrm{hyp}$

Tan

- Given an angle θ, define $\tan \theta=(\sin \theta) /(\cos \theta)$

Inverse Functions:

- $\quad \arcsin \mathrm{x}=\sin ^{-1} \mathrm{x}$ for x in domain $[-\pi / 2, \pi / 2]$
- $\operatorname{arcos} x=\cos ^{-1}(x)$ in domain $[0, \pi]$
- $\quad \arctan \mathrm{x}=\tan ^{-1} \mathrm{x}$ for x in domain $[-\pi / 2, \pi / 2]$

Other Functions:
Given an angle θ, define:

- $\sec \theta=1 /(\cos \theta)$
- $\csc \theta=1 /(\sin \theta)$
- $\cot \theta=1 /(\tan \theta)=(\cos \theta) /(\sin \theta)$

