Definitions

- A function f has an absolute maximum (or global maximum) at c iff $\forall x \in D, f(c) \geq f(x)$, where D is the domain of f.
The number $f(c)$ is called the maximum value of f on D.
- A function f has an absolute minimum (or global minimum) at c iff $\forall \mathrm{x} \in \mathrm{D}, \mathrm{f}(\mathrm{c}) \leq \mathrm{f}(\mathrm{x})$, where D is the domain of f .
The number $f(c)$ is called the minimum value of f on D.
- The maximum and minimum values of f are called the extreme values of f.
- A function f has an local maximum (or relative maximum) at c iff $\forall x \in(a, b), f(c) \geq f(x)$, where (a, b) is an interval containing c.
- A function f has an local minimum (or relative minimum) at c iff $\forall \mathrm{x} \in(\mathrm{a}, \mathrm{b}), \mathrm{f}(\mathrm{c}) \leq \mathrm{f}(\mathrm{x})$, where (a, b) is an interval containing c .

Extreme Value Theorem

- If f is continuous on a closed interval [a,b], then f attains an absolute maximum value $f(c)$ and an absolute minimum value $f(d)$ at some numbers c and d in $[a, b]$.

Critical Numbers

- Fermat's Theorem: If f has a local maximum or minimum at c , and if $\mathrm{f}^{\prime}(\mathrm{c})$ exists, then $\mathrm{f}^{\prime}(\mathrm{c})=0$.
- A critical number of a function f is a number c in the domain of f such that either $\mathrm{f}^{\prime}(\mathrm{c})=0$ or $\mathrm{f}^{\prime}(\mathrm{c})$ doesn't exist.
- If f has a local maximum or minimum at c , then c is a critical number of f

Closed Interval Method

- To find the absolute maximum and minimum values of a continuous function f on a closed interval [a,b]:
- Calculate $f(a)$ and $f(b)$
- Calculate the values of $f(x)$ for all critical points x in $[a, b]$
- The largest of these values is the absolute maximum value in [a,b] and the smallest is the absolute minimum value in $[\mathrm{a}, \mathrm{b}]$.

