First Derivatives and Graphs

Increasing/Decreasing Test:

- $\left(\forall x \in(a, b), f^{\prime}(x)=0\right) \Rightarrow f$ is constant on (a, b)
- $\left(\forall x \in(a, b), f^{\prime}(x)>0\right) \Rightarrow f$ is increasing on (a, b)
- $\left(\forall x \in(a, b), f^{\prime}(x)<0\right) \Rightarrow f$ is decreasing on (a, b)

First Derivative Tests:

Suppose that c is a critical number of a continuous function f .

- If f^{\prime} changes from positive to negative at c , then f has a local maximum at c .
- If $\left(\forall x<c f^{\prime}(x)>0\right) \wedge\left(\forall x>c f^{\prime}(x)<0\right)$, then f has an absolute maximum at c.
- If f^{\prime} changes from negative to positive at c , then f has a local minimum at c .
- If $\left(\forall x<c f^{\prime}(x)<0\right) \wedge\left(\forall x>c f^{\prime}(x)>0\right)$, then f has an absolute minimum at c.
- If f^{\prime} doesn’t change sign at c , then f has no local maximum or minimum at c .

Second Derivatives and Graphs

Concavity

- If the graph of a function f lies above all its tangents on an interval I , then it is called concave upward (CU) on I.
- If the graph of a function f lies below all its tangents on an interval I, then it is called concave downward (CD) on I.
- A point P on the graph of a function f is called an inflexion point if f is continuous there and the concavity of the curve changes at c.

Concavity Test

- If $\forall x \in I, f^{\prime \prime}(x)>0$, then the graph of f is concave upward on I.
- If $\forall x \in I, f^{\prime \prime}(x)<0$, then the graph of f is concave downward on I.
- If a point c in an interval I is s. $\mathrm{f}^{\prime \prime}(\mathrm{x})$ has one sign for all x smaller than c and the opposite sign for all x larger than c, then c is an inflexion point of f.

Second Derivative Test:
Suppose $\mathrm{f}^{\prime \prime}$ is continuous near c.

- If $\mathrm{f}^{\prime}(\mathrm{c})=0$ and $\mathrm{f}^{\prime \prime}(\mathrm{c})>0$, then f has a local minimum at c
- If $\mathrm{f}^{\prime}(\mathrm{c})=0$ and $\mathrm{f}^{\prime \prime}(\mathrm{c})<0$, then f has a local maximum at c

