Indeterminate Forms

- Given two functions f and g.
- Let a be a point where the limits of these functions at a are 0 or $\pm\infty$
- The limits of algebraic combinations of these functions at a may or may not exist and are called indeterminate forms.

Indeterminate Quotients

- If $\lim_{x \to a} f(x) = 0$ and $\lim_{x \to a} g(x) = 0$, then $\lim_{x \to a} \frac{f(x)}{g(x)}$ is of type $\frac{0}{0}$
- If $\lim_{x \to a} f(x) = \pm \infty$ and $\lim_{x \to a} g(x) = \pm \infty$, then $\lim_{x \to a} \frac{f(x)}{g(x)}$ is of type $\frac{\infty}{\infty}$

Indeterminate Products:

• If $\lim_{x \to a} f(x) = 0$ and $\lim_{x \to a} g(x) = \pm \infty$, then $\lim_{x \to a} g(x) = \pm \infty$.

hen
$$\lim[f(x).g(x)]$$
 is of type $0 \cdot \infty$

Indeterminate Differences:

• If $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = \pm \infty$, then $\lim_{x \to a} [f(x) - g(x)]$ is of type $\infty - \infty$

Indeterminate Powers:

- If $\lim_{x \to a} f(x) = 0$ and $\lim_{x \to a} g(x) = 0$, then $\lim_{x \to a} [f(x)]^{g(x)}$ is of type 0^0 • If $\lim_{x \to a} f(x) = \pm \infty$ and $\lim_{x \to a} g(x) = 0$, then $\lim_{x \to a} [f(x)]^{g(x)}$ is of type ∞^0
- If $\lim_{x \to a} f(x) = 1$ and $\lim_{x \to a} g(x) = \pm \infty$, then $\lim_{x \to a} [f(x)]^{g(x)}$ is of type 1^{∞}

L'Hospital's Rule

Let f and g be differentiable functions, and $g'(x) \neq 0$ near a (except possibly at a) Suppose that: $\lim_{x \to a} \frac{f(x)}{g(x)}$ is of indeterminate form $\frac{0}{0}$ or $\frac{\infty}{\infty}$ Then if $\lim_{x \to a} \frac{f'(x)}{g'(x)}$ exists or is $\pm \infty$, $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$