Indeterminate Forms

- Given two functions f and g .
- Let a be a point where the limits of these functions at a are 0 or $\pm \infty$
- The limits of algebraic combinations of these functions at a may or may not exist and are called indeterminate forms.

Indeterminate Quotients

- If $\lim _{x \rightarrow a} f(x)=0 \quad$ and $\lim _{x \rightarrow a} g(x)=0, \quad$ then $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$ is of type $\frac{0}{0}$
- If $\lim _{x \rightarrow a} f(x)= \pm \infty$ and $\lim _{x \rightarrow a} g(x)= \pm \infty, \quad$ then $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$ is of type $\frac{\infty}{\infty}$

Indeterminate Products:

- If $\lim _{x \rightarrow a} f(x)=0 \quad$ and $\lim _{x \rightarrow a} g(x)= \pm \infty, \quad$ then $\lim _{x \rightarrow a}[f(x) . g(x)]$ is of type $0 \cdot \infty$

Indeterminate Differences:

- If $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)= \pm \infty$,
then $\lim _{x \rightarrow a}[f(x)-g(x)]$ is of type $\infty-\infty$
Indeterminate Powers:
- If $\lim _{x \rightarrow a} f(x)=0$ and $\lim _{x \rightarrow a} g(x)=0$,
then $\lim _{x \rightarrow a}[f(x)]^{g(x)}$ is of type 0^{0}
- If $\lim _{x \rightarrow a} f(x)= \pm \infty$ and $\lim _{x \rightarrow a} g(x)=0$, then $\lim _{x \rightarrow a}[f(x)]^{g(x)}$ is of type ∞^{0}
- If $\lim _{x \rightarrow a} f(x)=1$ and $\lim _{x \rightarrow a} g(x)= \pm \infty$, then $\lim _{x \rightarrow a}[f(x)]^{g(x)}$ is of type 1^{∞}

L'Hospital's Rule

Let f and g be differentiable functions, and $\mathrm{g}^{\prime}(\mathrm{x}) \neq 0$ near a (except possibly at a)
Suppose that: $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$ is of indeterminate form $\frac{0}{0}$ or $\frac{\infty}{\infty}$
Then if $\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}$ exists or is $\pm \infty, \quad \lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}$

