1. Find domain $D=\{$ all values of \mathbb{R} where f is defined $\}=\{x \in \mathbb{R} \mid \exists!y \in \mathbb{R}, y=f(x)\}$
2. Limits where f is undefined or not continuous

Determine what happens to f as it approaches the limits of its domain or its continuity.

- Calculate $\lim _{x \rightarrow a^{+}} f(x)$ whenever $\mathrm{f}(\mathrm{a})$ is not defined or f not continuous at a
- If this limit is $\pm \infty$, there will be a vertical asymptote
- Calculate $\lim _{x \rightarrow \pm \infty} f(x)$
- If this limit is a constant c , there will be a horizontal asymptote.
- If $\lim _{x \rightarrow \infty}[f(x)-(m x+b)]=0$, then the line $\mathrm{y}=\mathrm{mx}+\mathrm{b}$ is a slant asymptote.

3. Symmetry and Repetition

- Curves of even functions: $\quad \forall \mathrm{x} \in \mathrm{D} \mathrm{f}(-\mathrm{x})=\mathrm{f}(\mathrm{x})$ are symmetric about the y-axis
- Curves of odd functions: $\forall \mathrm{x} \in \mathrm{D} \mathrm{f}(-\mathrm{x})=-\mathrm{f}(\mathrm{x})$ are symmetric about the origin
- Curves of periodic functions: $\forall x \in D f(x+p)=f(x)$ for a constant p are repeated over consecutive intervals of size p.

4. Intervals of Increase and Decrease: compute $f^{\prime}(x)$

- f is increasing in intervals where $f^{\prime}(x)>0$
- f is decreasing in intervals where $f^{\prime}(x)<0$

5. Local and Absolute Maxima and Minima

Find all the critical numbers of f : $f^{\prime}(x)$ is 0 or undefined. Use first or second derivative tests to determine if there are extreme values at these points
6. Concavity and Points of Inflection: compute $f^{\prime \prime}(x)$

- f is concave up in intervals where $f^{\prime \prime}(x)>0$
- f is concave down in intervals where $\mathrm{f}^{\prime \prime}(\mathrm{x})<0$
- Inflection points occur where f changes concavity.

7. Intercepts

- f intercepts y -axis at $(0, f(0))$
- f intercepts x-axis at $(x, 0)$ s.t. $f(x)=0$

8. Sketch curve
