MTH 210 Midterm Test I Solutions

1. Prove by induction that

$$
\sum_{i=2}^{n} i(i-1)=\frac{n(n-1)(n+1)}{3}
$$

Proof: (By induction on n)
$\underline{\text { Base Case Let } n=2, \sum_{i=2}^{2} i(i-1)=2 \times(2-1)=2, \frac{1}{3}(2(2-1)(2+1)=2 \text {, so true for }}$ $n=2$.
$\underline{\text { Inductive Step }}$ Let $n=k \geq 2$ Assume true for $n=k: \sum_{i=2}^{k} i(i-1)=\frac{k(k-1)(k+1)}{3}$

$$
\begin{array}{rlrl}
\text { Consider } \sum_{i=2}^{k+1} i(i-1) & =\left(\sum_{i=2}^{k} i(i-1)\right)+(k+1) k & & \text { (Definition of } \sigma) \\
& =\frac{k(k-1)(k+1)}{3}+(k+1) k & & \text { (Inductive Hypothesis) } \\
& =\frac{k(k+1)}{3}((k-1)+3) & & \\
& =\frac{1}{3} k(k+1)(k+2) &
\end{array}
$$

So true for $n=k+1$.
2. Consider the sequence $a_{0}=1, a_{n}=3 a_{n-1}+2, n>0$.
(a) Calculate $a_{1}, a_{2}, a_{3}, a_{4}$. Keep your intermediate answers as you will need them for the next part of the question.

$$
\begin{array}{lll}
a_{1}=3 \cdot 1+2 & & =5 \\
a_{2}=3(3+2)+2 & =3^{2}+2 \cdot 3+2 & =17 \\
a_{3}=3\left(3^{2}+2 \cdot 3+2\right)+2 & =3^{3}+2 \cdot 3^{2}+2 \cdot 3+2 & \\
a_{4}=3\left(3^{3}+2 \cdot 3^{2}+2 \cdot 3+2\right)+2 & =3^{4}+2 \cdot 3^{3}+2 \cdot 3^{2}+2 \cdot 3+2 & =161
\end{array}
$$

(b) Use iteration to find a formula for the sequence. Simplify your answer as much as possible. In particular, your final answer should not contain sums. Quote any formulas or rules that you use.

$$
a_{n}=3^{n}+2\left(\sum_{i=0}^{n-1} 3^{i}\right)+2=3^{n}+2\left(\frac{3^{n}-1}{3-1}\right)=2 \cdot 3^{n}-1
$$

We have used the formula for the sum of a geometric sequence: $\sum_{i=0}^{n} r^{i}=\frac{r^{n+1}-1}{r-1}$
3. Find a regular expression for the following languages over $\{0,1\}$
(a) All string which do not begin with a 1.

$$
0(0 \vee 1)^{*} \vee \epsilon
$$

(b) All strings in which every odd position is a 1 .

$$
(1(0 \vee 1))^{*}(1 \vee \epsilon) \text { or }(10 \vee 11)^{*}(1 \vee \epsilon)
$$

4. Find all trees with five vertices up to isomorphism.

5. For each of the languages, L, over $\Sigma=\{a, b\}$ defined by the given regular expression:
i. Determine if $\epsilon \in L$; ii. give two nonempty strings in L iii. give two nonempty strings which are in Σ^{*} but not in L. iv. Give a short description of L in English.
(a) $\left(a^{*} \vee b^{*}\right)$
i. $\epsilon \notin L$. ii. a, b (etc). iii. $a b, b a$ (etc).
iv. Any string consisting entirely of a 's or entirely of b 's.
(b) $(a b \vee b a \vee b b)(a \vee b)^{*}$
i. $\epsilon \in L$. ii. $a b, b a$ (etc). iii. $\epsilon, b, a, a a$.
iv. Any string of length at least 2, which does not start with $a a$.
6. For each of the following either explain why the specified graph cannot exist (quote any theorems you use), or draw a graph with the given property.
(a) A graph with degree sequence $3,3,3$.

Does not exist. The total degree is $3+3+3=9$, but the total degree must be even.
(b) A graph with degree sequence 3, 3, 4

One of:

(c) A simple bipartite graph on 6 vertices containing an Eulerian circuit and a Hamiltonian circuit.

(d) A simple graph with 3 connected components on 5 vertices.

One of:

(e) A binary tree of height 3 with 9 leaves.

Does not exist. There is a theorem that says that $t \leq 2^{h}$, but in this case $t=9$ and $h=3$.
(f) A binary tree with 6 vertices and 3 leaves.

One of:

