

For the graph G given above give the following, or explain why the graph does not have the given property. (Quote any theorems you use.)

- (a) Find the order, size, total degree and degree sequence.Order: 8, Size 10, Total Degree: 20, Degree Sequence 2,2,2,2,2,4,4
- (b) Is G simple? Yes
- (c) How many connected components does G have? 1 Component
- (d) Find a walk from c to d which is not a path. czczd There are many possible answers.
- (e) Find an Eulerian circuit in G. baxybczwdzb There are other possible answers.
- (f) Draw a spanning tree of G.

One possible solution.

- 2. For each of the following either explain why the specified graph cannot exist (quote any theorems you use), or draw a graph with the given property.
 - (a) A simple graph with degree sequence 1, 1, 2, 2, 3.
 Does not exist. The total degree is odd or There are an odd number of vertices of odd degree.
 - (b) A simple graph with degree sequence 1, 2, 2, 2, 3.

(c) A bipartite cycle (Recall: a cycle is a simple circuit). Any even order cycle. (d) The path of length 4, P_5 and its complement $\overline{P_5}$. Note $P_5 \cong \overline{P_5}$.

- (e) A 3-regular graph on 4 points. K_4
- (f) A full binary tree with 6 vertices and 4 leaves. *Does not exist.* In a full binary tree, if the number of leaves is n - 1, then the order is 2n + 1. See Theorem 11.5.5.
- (g) A binary tree with height 2 and 3 leaves

3. List all simple connected graphs on 4 points, up to isomorphism.

- 4. In the following f, g and h are functions and n is a variable. Answer true or false in each case by circling the appropriate answer. Note that marks may be deducted for incorrect answers.
 - (a) \mathbf{F} (b) \mathbf{T} (c) \mathbf{T} (d) \mathbf{F} (e) \mathbf{T} (f) \mathbf{T} (g) \mathbf{F} (h) \mathbf{T}
- 5. Consider the sequence

$$a_1 = 2;$$

 $a_n = a_{n-1} + n + 1, \quad n > 1.$

(a) Find a_2 , a_3 , a_4 and a_5 . Keep your intermediate answers as you will need them for the next part of the question.

(b) Use iteration to find an analytic formula for the sequence a_n . Simplify your answer as much as possible, showing your work. In particular, your final answer should not contain sums. Quote any formulas or rules that you use.

Guess:
$$a_n = (\sum_{i=1}^n i) + 1 + n - 1$$

= $\frac{n(n+1)}{2} + n$
= $\frac{n(n+3)}{2}$

Midterm Solutions

6. Show by weak induction that 8 divides $3^{2n} - 1$, for every $n \ge 0$. <u>Base Case</u> Let n = 0, then $3^{2n} - 1 = 0$ and $8 \mid 0$. So true for n = 0. <u>Inductive Step</u> Let $n = k \ge 0$ and assume $8 \mid 3^{2k} - 1$. <u>So</u> $\exists m \in \mathbb{Z}$ such that n = 8m (Definition of Divides).

Consider	$3^{2(k+1)} - 1$	=	$3^2 \cdot 3^{2k} - 1$	(Algebra)
		=	$(8+1) \cdot 3^{2k} - 1$	(Algebra)
		=	$8 \cdot 3^{2k} + 3^{2k} - 1$	(Algebra)
		=	$8 \cdot 3^{2k} + 8m$	(Inductive Hypothesis)
		=	$8(\cdot 3^{2k} + m)$	(Inductive Hypothesis)

 $3^{2k} + m \in \mathbb{Z}$ (Closure), so $8 \mid 3^{2(k+1)} - 1$ (Definition of Divides). \Box

7. Let b_n be the sequence defined by $b_0 = 3$, $b_1 = 5$ and

$$b_n = 2b_{n-1} + 3b_{n-2}$$
, for $n > 1$.

Use strong induction to show that

$$b_n = 2 \cdot (3)^n + (-1)^n.$$

<u>Base Case</u> Let n = 0, then $b_0 = 3$ and $2 \cdot (3)^0 + (-1)^0 = 3$. So true for n = 0. Let n = 1, then $b_1 = 5$ and $2 \cdot (3)^1 + (-1)^1 = 5$. So true for n = 1. Inductive Step Let n = k > 1 and assume $b_i = 2 \cdot (3)^i + (-1)^i$ for each $0 \le i < k$.

Consider
$$b_k = 2b_{k-1} + 3b_{k-2}$$
 (Definition of b_n)

$$= 2(2 \cdot (3)^{k-1} + (-1)^{k-1}) + 3(2 \cdot (3)^{k-2} + (-1)^{k-2})$$
 (Inductive Hypothesis)
(Note $k - 1, k - 2 \ge 0$ since $k > 0$)

$$= 2 \cdot (3)^{k-2}(6+3) + (-1)^{k-2}(-2+3)$$
 (Algebra)

$$= 2 \cdot (3)^k + (-1)^{k-2}$$
 (Algebra)

So true for n = k. \Box